Fragment Binding Can Be Either More Enthalpy-Driven or Entropy-Driven: Crystal Structures and Residual Hydration Patterns Suggest Why.

نویسندگان

  • Eggert Rühmann
  • Michael Betz
  • Andreas Heine
  • Gerhard Klebe
چکیده

In lead optimization, small, enthalpically advantaged fragments have been suggested to be superior, as an entropic component will be added inevitably during late-stage optimization. Determination of thermodynamic signatures of weak-binding fragments is essential to support the decision-making process, to decide which fragment to take to further optimization. High-resolution crystal structures of six fragments binding to the S1 pocket of thrombin were determined and analyzed with respect to their thermodynamic profile. The two most potent fragments exhibiting an amidine-type scaffold are not the most enthalpic binders; instead a chloro-thiophene fragment binds more enthalpically. Two chemically very similar chloro-aromatic fragments differ strongly in their potency (430 μM vs 10 mM); their binding modes are related, but the surrounding residual water network differs. The more potent one recruits a water molecule and involves Glu192 in binding, thus succeeding in firmly capping the S1 pocket. Fragments exhibiting a rather perfect solvation pattern in their binding mode also experience the highest potency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Thermodynamic Study of the Interaction between Urease and Copper Ions

A thermodynamic study of copper ions by jack bean urease (JBU) was carried out at two temperatures of 27 and 37?C in Tris buffer (30 mM; pH=7.0) using an isothermal titration calorimetry. There is a set of twelve identical and non-interacting binding sites for copper ions. The intrinsic dissociation equilibrium constant and the molar enthalpy of binding are 285 µM and ?15.2 kJ/mol at 27?C and 3...

متن کامل

Synthesis, Characterization and interaction Studies of 1-(3-bromophenyl azo) 2,7-dihydroxy naphthalene, (BPADHN) with calf thymus deoxy ribo nucleic acid (ct-DNA)

In this study at first , an azo dye, 2,7- naphthalenediol, 2-[(4-Bromophenyl)azo (BPAND) as a ligand has been synthesized by addition of p-Bromoaniline to the modified montomorillonite K10 clay. This ligand was characterized using 1H-NMR, UV-Vis and IR spectroscopies. Subsequently, its interaction with calf thymus deoxyribonucleicacid ,ct-DNA was investigated in 5 mM phosphate buffer solution, ...

متن کامل

Refolding of Lysozyme Upon Interaction with ?-Cyclodextrin

Effects of ?-cyclodextrin, ?CD, on refolding of lysozyme was investigated at pH 12 employing isothermal titration calorimetry (ITC) at 300K in 30mM Tris buffer solution. ?CD was employed as an anti-aggregation agent and the heats obtained for lysozyme+?CD interactions are reported and analyzed in terms of the extended solvation model. It was indicated that there are two sets of identical and no...

متن کامل

Hydration of dimethyldodecylamine-N-oxide: enthalpy and entropy driven processes.

Dimethyldodecylamine-N-oxide (DDAO) has only one polar atom that is able to interact with water. Still, this surfactant shows very hydrophilic properties: in mixtures with water, it forms normal liquid crystalline phases and micelles. Moreover, there is data in the literature indicating that the hydration of this surfactant is driven by enthalpy while other studies show that hydration of surfac...

متن کامل

How Can Hydrophobic Association Be Enthalpy Driven?

Hydrophobic association is often recognized as being driven by favorable entropic contributions. Here, using explicit solvent molecular dynamics simulations we investigate binding in a model hydrophobic receptor-ligand system which appears, instead, to be driven by enthalpy and opposed by entropy. We use the temperature dependence of the potential of mean force to analyze the thermodynamic cont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of medicinal chemistry

دوره 58 17  شماره 

صفحات  -

تاریخ انتشار 2015